Pre-convoluted neural networks for fashion classification
نویسندگان
چکیده
In this work, concept of the fashion-MNIST images classification constructed on convolutional neural networks is discussed. Whereas, 28×28 grayscale 70,000 fashion products from 10 classes, with 7,000 per category, are in dataset. There 60,000 training set and 10,000 evaluation set. The data has been initially pre-processed for resizing reducing noise. Then, normalized ensuring that all same scale usually improves performance. After normalizing data, it augmented where one image will be three forms output. first output obtained by rotating actual one; second as acute angle image; third tilt image. new 180,000 phase 30,000 testing phase. Finally, sent to process input model pre-convolution network. network five layered convoluted deep do performance proposed system shows 94% accuracy was 93% VGG16 92% AlexNetnetworks.
منابع مشابه
Convolutional Neural Networks for Fashion Classification and Object Detection
Fashion classification encompasses the identification of clothing items in an image. The field has applications in social media, e-commerce, and criminal law. In our work, we focus on four tasks within the fashion classification umbrella: (1) multiclass classification of clothing type; (2) clothing attribute classification; (3) clothing retrieval of nearest neighbors; and (4) clothing object de...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملNeural Networks for Emotion Classification
...........................................................................................................................................5
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Using Neural Networks for the Detection, Extraction and Pre-classification of Spectra in Objective Prism Images
{ A system based on a multi{layer feed{forward neural network is presented, which is able to detect and extract single, multiple or overlapped spectra from objective prism images, and to perform a coarse classiication. The data obtained are currently fed to subsequent wavelength calibration and detailed rule{ based classiication steps. Given the encouraging results obtained, we plan to use the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Electrical Engineering and Informatics
سال: 2021
ISSN: ['2302-9285']
DOI: https://doi.org/10.11591/eei.v10i2.2750